
Performance Characteristics

- -Frequency Range: 8GHz 12GHz;
- - Receive Gain: 22dB;
- - Noise Figure: 3dB;
- - Transmit Power Gain: 28dB;
- - Transmit Saturation Power: 40dBm;
- - 6-bit Phase Shifter RMS: 5°;
- - 6-bit Attenuator RMS : 1.2dB;
- - TTL-level Serial Control;
- Module Size: 16mm×16mm×3.4mm (excluding balls);

Product Introduction

HX9X4020G16 is an X-band surface-mount four-channel transceiver module. It adopts the BGA packaging form. The shell is made of ceramic substrate, and the enclosure and cover are made of metal materials. The thermal resistance of the module is reduced by means of heat dissipation from the top and the bottom simultaneously. The module integrates the following circuit functions: 6-bit numerically controlled phase shifter, 6-bit attenuator, transmit driver amplifier, receive low-noise amplifier, power divider, switch circuit, and serial-to-parallel driver, etc. The operating frequency ranges from 8GHz to 12GHz. The receive gain is 20dB, the noise figure is 3dB, the transmit output saturation power is 40dBm, and the transmit power gain is 28dB. This module is mainly applied to microwave transceiver components to achieve functions such as amplification, amplitude modulation, and phase modulation of transceiver signals. Electrical Parameters

When the transmit channel and the receive channel are working, Vd1 = +28V, Vd2 = +3.3V, Vee1=-5V, Vee2=-28V. The following are the single-channel indicate:

Parameter	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Name	Name	Pulse Width 50us	Value	Value	Value	
		Duty Cycle 10% f				
		= 8 -12GHz				
Transmit	Transmit Gain	$TA = 25^{\circ}C$	-	28	-	dB
Channel						
	Gain Flatness	$TA = 25^{\circ}C$	-1	-	1	dB
	Saturation	$TA = 25^{\circ}C$	-	37	-	dBm
	Power					
	Input Port	$TA = 25^{\circ}C$	-	1.5	-	
	VSWR					
	Number of	$TA = 25^{\circ}C$	6bit,	6bit,	6bit,	
	Phase Shifting		5.625°	5.625°	5.625°	
	Bits					

	RMS of	$TA = 25^{\circ}C$	-	5	-	0
	64-phase					
	Shifting States					
	Phase Shifting	$TA = 25^{\circ}C$	-1	-	1	dB
	Amplitude					
	Variation					
	Channel Gain	$TA = 25^{\circ}C$	-0.5	-	0.5	dB
	Consistency					
	Channel Phase	$TA = 25^{\circ}C$	-30	-	30	0
	Consistency					
	VD1 Current	$TA = 25^{\circ}C$	-	1300	-	mA
	VD2 Current	$TA = 25^{\circ}C$	-	350	-	mA
	Vee1 Current	$TA = 25^{\circ}C$	-	1.5	-	mA
Receive Channel	Noise Figure	$TA = 25^{\circ}C$	-	3.0	-	dB
	Receive Gain	$TA = 25^{\circ}C$	-	22	-	dB
	Gain Flatness	$TA = 25^{\circ}C$	-1	-	1	dB
	Input P-1	$TA = 25^{\circ}C$	-	-27	-	dBm
	Input Port VSWR	$TA = 25^{\circ}C$	-	1.3	-	
	Number of	$TA = 25^{\circ}C$	6bit,	6bit,	6bit,	
	Phase Shifting		5.625°	5.625°	5.625°	
	Bits					
	RMS of	$TA = 25^{\circ}C$	-	2.5	-	0
	64-phase					
	Shifting States					
	Phase Shifting	$TA = 25^{\circ}C$	-1.5	-	1.5	dB
	Amplitude					
	Variation					
	Number of	$TA = 25^{\circ}C$	6 bit,	6 bit,	6 bit,	
	Attenuation		0.5dB	0.5dB	0.5dB	
	Bits					
	RMS of 64	$TA = 25^{\circ}C$	-	1	-	dB
	Attenuation					
	States					
	Additional	$TA = 25^{\circ}C$	-10	-	10	0
	Phase Shift of					
	Attenuation					

Channel Gain	$TA = 25^{\circ}C$	-1	-	1	dB
Consistency					
Channel Phase	$TA = 25^{\circ}C$	-30	-	30	0
Consistency					
Vd1 Current	$TA = 25^{\circ}C$	-	0	-	mA
Vd2 Current	$TA = 25^{\circ}C$	-	95	-	mA
Vee1 Current	$TA = 25^{\circ}C$	-	1.5	-	mA

Operating Limit Parameters

Parameter	Symbol	Limit Value		
Maximum Drain-Source	Vd1	+32V		
Voltage 1				
Maximum Drain-Source	Vd2	+4V		
Voltage 2				
Minimum Driver Supply	Vee	-5.5V		
Voltage				
Maximum Input Power	Pin(200us, 20%)	+40dBm		
(RF1/RF2/RF3/RF4)				
Maximum Input Power (COM)	Pin	+15dBm		
Storage Temperature	TSTG	-55°C to +85°C		
Operating Temperature	Тор	-55°C to +85°C		

Registers in the beam control circuit can be classified into five categories according to their functions, as shown in the following table:

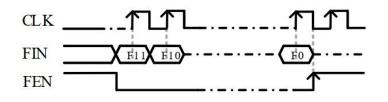
	Register		Name	Definition
Register Status	reg_shift		Status Shift Register	Shift register, containing amplitude - phase and transmit - receive control data for each channel
	reg_data	reg_data1	Status Data Register 1	The first - stage latch, with 32 sets of registers for each channel. The read - write address is determined by reg_fun2

		reg_data2	Status Data Register 2	The second - stage latch
Register Control	reg_fun1		Control Shift Register	Shift register, writing the read - write address bit data of reg_data1
	reg_fun2		Control Data Register	Stores the read - write address data of reg_data1, with 16 sets of registers

Definition of the Control Register Structure

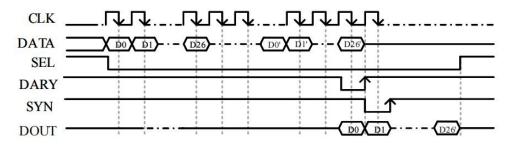
There are 16 control data registers (reg_fun2), and each register contains 8 - bit data, as shown in the following table. Only the lower 5 - bit of the first two control data registers are used in this protocol, corresponding to the write and read addresses of the status data register 1 (reg_data1) respectively.

reg_fun2	D7	D6	D5	D4	D3	D2	D1	D0	Explanation	
reg_fun2[0]	-	-	-		reg2_	addr_	w[4:0]	Write address bit selection		
reg_fun2[1]	-	-	-		reg2_	_addr_	_r[4:0]	Read address bit selection		
reg_fun2[2] - [15]		Internally reserved								

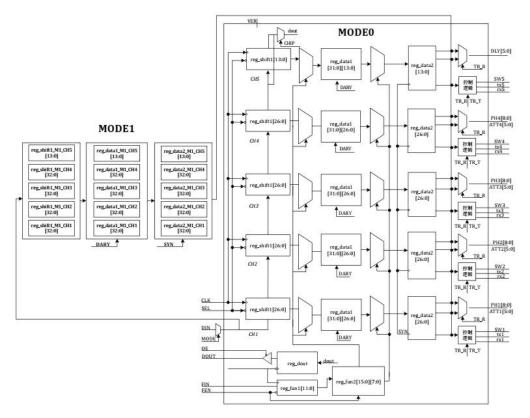

The control shift register (reg_fun1) contains read - write address bit control signals. reg_fun1 contains 12 - bit data, where addr is the high 4 - bit of reg_fun1, representing the address of the control data register (reg_fun2), and data is the low 8 - bit of reg_fun1, representing the data written into the corresponding reg_fun2.

Control Shift Register	11		8	7		0
Content Definition		addr			data	

When configuring the control register, when FEN is at a low level, on the rising edge of CLK, the FIN input signal will be sequentially written into reg_fun1[0], and the original data in

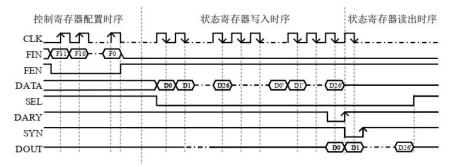

reg_fun1 will be sequentially shifted from reg_fun1[0] to reg_fun1[11]. reg_fun1 will write the data in data into the specified position in reg_fun2 according to the value of addr. For example, when addr is 0x1, data will be written into reg_fun2[1].

The basic functions of the SPI interface protocol rely on eight interfaces: CLK, SEL, DATA, DARY, SYN, DOUT, FIN, and FEN. CLK is the system synchronization clock, FIN is the serial input signal of the control shift register, and FEN is a low - level - effective enable signal. When FEN is low, on the rising edge of CLK, the FIN serial input signal is stored in the control shift register (reg_fun1) until all 12 - bit signals are stored. At this time, the FEN signal is pulled high, and on the first rising edge of CLK after being pulled high, the 12 - bit data is written into the control data register (reg fun2). The write timing diagram of the control register is as follows:



SEL is a low - level - effective chip select synchronization signal, DATA is the serial input signal of the status shift register (reg_shift), and DOUT is the serial output signal of the status shift register (reg_shift). The input of DATA and the output of DOUT are both at the falling edge of CLK when SEL is at a low level, and the writing and output are in groups of the complete data of all channels. When the SEL signal changes from high to low, the chip is selected, and the serial input signal of DATA starts to be stored in the status shift register until all signals are stored. At this time, DOUT starts to output the first - bit serial input signal.

After the DATA data is written, on the rising edge of DARY, the serial data is written into the status data register 1 (reg_data1), and the write address bit of reg_data1 is determined by the control data register (reg_fun2). On the rising edge of SYN, the data in reg_data1 is read out to the status data register 2 (reg_data2), and the read address bit of reg_data1 is determined by reg_fun2. After the data is output through reg_data2, it passes through a multiplexer with TR_R as the selection signal to output the transmit - receive amplitude - phase and switch control signals. The write and read timing of the status register is as follows. It should be noted that the serial write operation after power - on should be completed after the power - on reset delay (between 20 - 60us).


Block Diagram of the Beam Control Circuit is as following:

- reg_shift1_CHx (x = 1 4) is the status shift register. At the falling edge of CLK, if SEL is 0, the shift starts. The data enters reg_shift1_CH1 from the DATA port and starts to shift. The data in reg_shift1_CH1[26] starts to shift towards reg_shift1_CH1[0], and the value of reg_shift1_CH1[0] is shifted to reg_shift1_CH2[26] (that is, the first input data is the lowest bit reg_shift1_CH5[0] of channel 5), and the same rule applies to channels 2, 3, 4, and 5.
- reg_data1_CHx (x = 1 4) is the status data register 1, corresponding to the previous stage reg_shift1_CHx respectively. Each channel's reg_data1_CHx has 32 sets of registers, namely reg_data1_CHx[31] reg_data1_CHx[0]. On the rising edge of DARY, all the data in reg_shift1_CHx will be written into reg_data1_CHx specified by reg_fun2[0][4:0].
- 3. reg_data2_CHx (x = 1 4) is the status data register 2, corresponding to the previous stage reg_shift1_CHx and reg_data1_CHx respectively. On the rising edge of SYN, the data selected by reg_fun2[1][4:0] in reg_data1_CHx will be read out to reg_data2_CHx.

4. After the data is output through reg_data2_CHx, it passes through a multiplexer with TR_R as the selection signal to output the transmit - receive amplitude - phase and switch control signals.

Timing Diagram of Function Register Configuration

The single - read - write control timing diagram is as shown above.

- 1. First configure the read write address bits in the control register.
- 2. When configuring the control register, pull the SEL signal high; when configuring the status register, pull the FEN signal high to avoid data misalignment or incorrect storage.

Truth Table

The module's serial data has 122 bits. In the module, each of channels 1 - 4 has 27 bits, and the common channel has 14 bits. The function definitions of the data bits are shown in the following table.

Delay	Delay	Chan	Channel 4	Cha	Channel	Chan	Channel	Chan	Channel
Chan	Chann	nel 4		nne	3	nel 2	2	nel 1	1
nel	el			13					
D0	Receiv	D14	Receive	D4	Receive	D68	Receive	D95	Receive
	e		Enable	1	Enable		Enable		Enable
	Enable		Control Bit		Control		Control		Control
	Contro				Bit		Bit		Bit
	l Bit								
D1	Trans	D15	Transmit	D4	Transmit	D69	Transmit	D96	Transmit
	mit		Enable	2	Enable		Enable		Enable
	Enable		Control Bit		Control		Control		Control
	Contro				Bit		Bit		Bit
	l Bit								
D2	Set to	D16	Set to 0	D4	Set to 0	D70	Set to 0	D97	Set to 0
	0			3					
D3	Set to	D17	Transmit	D4	Transmit	D71	Transmit	D98	Transmit
	0		Phase Shift	4	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			5.625°		Control		Control		Control

					Bit		Bit		Bit
					5.625°		5.625°		5.625°
D4	Set to	D18	Transmit	D4	Transmit	D72	Transmit	D99	Transmit
	0		Phase Shift	5	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			11.25°		Control		Control		Control
					Bit		Bit		Bit
					11.25°		11.25°		11.25°
D5	Set to	D19	Transmit	D4	Transmit	D73	Transmit	D100	Transmit
	0		Phase Shift	6	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			22.5°		Control		Control		Control
					Bit 22.5°		Bit 22.5°		Bit 22.5°
D6	Set to	D20	Transmit	D4	Transmit	D74	Transmit	D101	Transmit
	0		Phase Shift	7	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			45°		Control		Control		Control
					Bit 45°		Bit 45°		Bit 45°
D7	Set to	D21	Transmit	D4	Transmit	D75	Transmit	D102	Transmit
	0		Phase Shift	8	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			90°		Control		Control		Control
					Bit 90°		Bit 90°		Bit 90°
D8	Set to	D22	Transmit	D4	Transmit	D76	Transmit	D103	Transmit
	0		Phase Shift	9	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			180°		Control		Control		Control
					Bit 180°		Bit 180°		Bit 180°
D9	Set to	D23	Receive	D5	Receive	D77	Receive	D104	Receive
	0		Phase Shift	0	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			5.625°		Control		Control		Control
					Bit		Bit		Bit
					5.625°		5.625°		5.625°
D10	Set to	D24	Receive	D5	Receive	D78	Receive	D105	Receive
	0		Phase Shift	1	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			11.25°		Control		Control		Control
					Bit		Bit		Bit
					11.25°		11.25°		11.25°
D11	Set to	D25	Receive	D5	Receive	D79	Receive	D106	Receive
	0		Phase Shift	2	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift

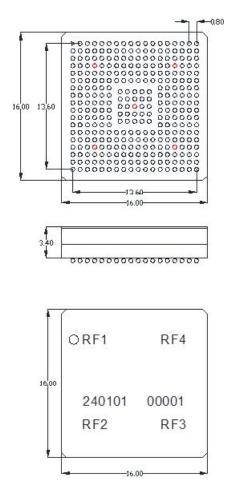
			22.5°		Control		Control		Control
					Bit 22.5°		Bit 22.5°		Bit 22.5°
D12	Set to	D26	Receive	D5	Receive	D80	Receive	D107	Receive
	0		Phase Shift	3	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			45°		Control		Control		Control
					Bit 45°		Bit 45°		Bit 45°
D13	Set to	D27	Receive	D5	Receive	D81	Receive	D108	Receive
	0		Phase Shift	4	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			90°		Control		Control		Control
					Bit 90°		Bit 90°		Bit 90°
		D28	Receive	D5	Receive	D82	Receive	D109	Receive
			Phase Shift	5	Phase		Phase		Phase
			Control Bit		Shift		Shift		Shift
			180°		Control		Control		Control
					Bit 180°		Bit 180°		Bit 180°
		D29	Transmit	D5	Transmit	D83	Transmit	D110	Transmi
			Attenuatio	6	Attenuat		Attenuat		Attenuat
			n Control		ion		ion		ion
			Bit 0.5dB		Control		Control		Control
					Bit		Bit		Bit
					0.5dB		0.5dB		0.5dB
		D30	Transmit	D5	Transmit	D84	Transmit	D111	Transmi
			Attenuatio	7	Attenuat		Attenuat		Attenuat
			n Control		ion		ion		ion
			Bit 1dB		Control		Control		Control
					Bit 1dB		Bit 1dB		Bit 1dB
		D31	Transmit	D5	Transmit	D85	Transmit	D112	Transmi
			Attenuatio	8	Attenuat		Attenuat		Attenuat
			n Control		ion		ion		ion
			Bit 2dB		Control		Control		Control
					Bit 2dB		Bit 2dB		Bit 2dB
		D32	Transmit	D5	Transmit	D86	Transmit	D113	Transmi
			Attenuatio	9	Attenuat		Attenuat		Attenuat
			n Control		ion		ion		ion
			Bit 4dB		Control		Control		Control
					Bit 4dB		Bit 4dB		Bit 4dB
		D33	Set to 0	D6	Set to 0	D87	Set to 0	D114	Set to 0
				0					
		D34	Set to 0	D6	Set to 0	D88	Set to 0	D115	Set to 0
				1					

D35	Receive	D6	Receive	D89	Receive	D116	Receive
	Attenuatio	2	Attenuat		Attenuat		Attenuat
	n Control		ion		ion		ion
	Bit 0.5dB		Control		Control		Control
			Bit		Bit		Bit
			0.5dB		0.5dB		0.5dB
D36	Receive	D6	Receive	D90	Receive	D117	Receive
	Attenuatio	3	Attenuat		Attenuat		Attenuat
	n Control		ion		ion		ion
	Bit 1dB		Control		Control		Control
			Bit 1dB		Bit 1dB		Bit 1dB
D37	Receive	D6	Receive	D91	Receive	D118	Receive
	Attenuatio	4	Attenuat		Attenuat		Attenuat
	n Control		ion		ion		ion
	Bit 2dB		Control		Control		Control
			Bit 2dB		Bit 2dB		Bit 2dB
D38	Receive	D6	Receive	D92	Receive	D119	Receive
	Attenuatio	5	Attenuat		Attenuat		Attenuat
	n Control		ion		ion		ion
	Bit 4dB		Control		Control		Control
			Bit 4dB		Bit 4dB		Bit 4dB
D39	Receive	D6	Receive	D93	Receive	D120	Receive
	Attenuatio	6	Attenuat		Attenuat		Attenuat
	n Control		ion		ion		ion
	Bit 8dB		Control		Control		Control
			Bit 8dB		Bit 8dB		Bit 8dB
D40	Receive	D6	Receive	D94	Receive	D121	Receive
	Attenuatio	7	Attenuat		Attenuat		Attenuat
	n Control		ion		ion		ion
	Bit 16dB		Control		Control		Control
			Bit 16dB		Bit 16dB		Bit 16dB

Notes:

1)The data bit D0 is first-in, first-out.

2)The amplitude-phase and attenuation control bits are active at high level, and the delay control bits are active at low level. The delay state is positive delay.


3)The transmit-receive control states are shown in the following table.

TR1	TR2	TransmitReceiveEnable BitEnable Bit		State	
1	0	Х	1	Receive State	
0	1	1	Х	Transmit State	
	Load State				

Outline Dimensions and Pad Arrangement Diagram

HX9X4020G16

8-12GHz TR Module

The pad arrangement is shown in the following figure.

Note: Unmarked pins are GND.

Serial	Symbol	Attribute	Level	Function Description
Number				

1	SEL	Input	TTL	Chip Select Signal, active at low level	
2	DOUT	Output	TTL	Serial output of the status register, self - test signal	
3	TRT	Input	TTL	Transmit external switch input	
4	TRR	Input	TTL	Receive external switch input	
5	SYN	Input	TTL	Write trigger signal for status data register 2, active at the rising edge	
6	DARY	Input	TTL	Write trigger signal for status data register 1, active at the rising edge	
7	CLK	Input	TTL	Clock signal input bit	
8	DATA	Input	TTL	Serial data input bit of the status register	
9	OE	Input	TTL	Reset enable signal	
10	FIN	Input	TTL	Serial data input bit of the control register	
11	FEN	Input	TTL	Serial input enable bit of the control register. Serial input is valid at low level, and FIN data is latched at the rising edge	
12	-5V	Input		-5V voltage input	
13	-28V	Input		-28V voltage input	
14	+3.3V	Input		+3.3V voltage input	
15	+28V	Input		+28V voltage input	
16	RF1	Input/Ou tput		Channel 1 RF input/output port	
17	RF2	Input/Ou tput		Channel 2 RF input/output port	
18	RF3	Input/Ou tput		Channel 3 RF input/output port	
19	RF4	Input/Ou tput		Channel 4 RF input/output port	
20	СОМ	Input/Ou tput		Common input/output port	
Others	GND	Ground		Ground	

Precautions

- 1. The module should be soldered to the board in a clean environment.
- The bottom surface of the module is soldered with 400μm diameter high lead solder balls using a 183°C solder (Sn63Pb37).
- 3. The inside of the module can withstand a high temperature of 240°C. It is recommended to use Sn63Pb37 solder paste for SMT soldering of the module. After soldering, spray cleaning can be carried out, but ultrasonic cleaning is not allowed.
- 4. It is recommended to select a circuit board material with a small difference in thermal expansion coefficient from that of ceramics for the design of the circuit board on which the module is mounted. Infrared heating is not suitable for the repair of the module after it is mounted on the board.
- 5. There are electrostatic sensitive components inside the module. During transportation and storage, it is packaged in a special anti static sealed package. When soldering the module to the board, the personnel and equipment should have reliable anti static measures. Do not open the package without anti static measures. During the subsequent board level and system level testing and use of the module, electrostatic protection should be paid attention to.
- 6. The anti static sealed package of the module when shipped should be removed only when it is to be mounted and used. Unused modules after unpacking should be stored in a dry cabinet and mounted and used within 4 weeks.
- 7. When the module is in transmit operation, the heat dissipation is high. It is recommended to adopt a top cooling method.
- 8. There are DC blocking capacitors inside the RX1, RX2, RX3, RX4, TX1, TX2, TX3, TX4 ports, and there is also a DC blocking capacitor inside the COM port.
- 9. When designing the application circuit of the module, 0.01μ F and 1μ F ceramic filter capacitors should be connected in parallel to the ground near the +28V, +3.3V, and -5V pins of the module.
- 10. Since it is triggered by the rising edge, LD should be at a high level when there is no signal.
- 11. If there are any problems, please contact the marketing personnel in a timely manner.
- 12. The indicators described in this document are estimated values. The specific indicators shall be subject to actual measurement.